

Global Training Provider for Corporate Software Security https://cydrill.com/courses/

Secure coding in C and C++ for
medical devices

CYDCp_MedDev | 4 days | Hands-on

Your medical device written in C and C++ works as intended, so you are done, right? But did
you consider feeding in incorrect values? 16Gbs of data? A null? An apostrophe? Negative
numbers, or specifically -1 or -231? Because that's what the bad guys will do – and the list is
far from complete.

The most important concern in the healthcare industry is naturally safety. However, once
isolated medical devices became highly connected to date, which poses new kinds of
security risks: from exposing sensitive patient information to denial of service. And
remember, there is no safety without security!

Handling security needs a healthy level of paranoia, and this is what this course provides: a
strong emotional engagement by lots of hands on labs and stories from real life, all to
substantially improve code hygiene. Mistakes, consequences, and best practices are our
blood, sweat and tears.

All this is put in the context of medical devices developed in C and C++, and extended by
core programming issues, discussing security pitfalls of these languages.

So that you are prepared for the forces of the dark side.

So that nothing unexpected happens.

Nothing.

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 2

Audience
C/C++ developers developing medical
devices

Preparedness
General C/C++ development

Group size
12 participants

Platforms
Linux

Windows

Labs
Hands-on

Outline
• Cyber security basics
• Buffer overflow
• Memory management hardening
• Common software security

weaknesses
• Using vulnerable components
• Security testing
• Wrap up

Objective list
• Getting familiar with essential cyber

security concepts
• Learning about security specialties of

the healthcare sector
• Handling security challenges in your

C and C++ code
• Identify vulnerabilities and their

consequences
• Learn the security best practices in C

and C++
• Understanding security testing

methodology and approaches
• Getting familiar with common

security testing techniques and tools

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 3

Table of contents

Day 1

> Cyber security basics
What is security?
Threat and risk
Cyber security threat types
Consequences of insecure software

 Constraints and the market
 The dark side

Regulations and standards
 Regulations for healthcare information systems

 HIPAA
 HIPAA and secure coding
 GDPR

 Regulations for medical devices
 Regulations and standards for medical devices
 Relevance of embedded / industrial control standards
 UL 2900
 ISA and IEC 62443
 NIST Guide to Industrial Control Systems (ICS) Security

Cyber security in the healthcare sector
 Threats and trends in healthcare
 Threats to medical devices
 The problem of legacy systems

> Buffer overflow
Assembly basics and calling conventions

 x64 assembly essentials
 Registers and addressing
 Most common instructions
 Calling conventions on x64

 Calling convention – what it is all about

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/cyber-security/cyber-security-from-a-galactic-viewpoint

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 4

 Calling conventions on x64
 The stack frame
 Stacked function calls

Memory management vulnerabilities
 Memory management and security
 Vulnerabilities in the real world
 Buffer security issues
 Buffer overflow on the stack

 Buffer overflow on the stack – stack smashing
 Exploitation – Hijacking the control flow
 Lab – Buffer overflow 101, code reuse
 Exploitation – Arbitrary code execution
 Injecting shellcode
 Lab – Code injection, exploitation with shellcode
 Case study – Stack BOF in boot file handling of MQX DHCP client

 Buffer overflow on the heap
 Unsafe unlinking
 Case study – Heap BOF in VxWorks DHCP options parsing
 Case study – Heartbleed

 Pointer manipulation
 Modification of jump tables
 Overwriting function pointers

Best practices and some typical mistakes
 Unsafe functions
 Dealing with unsafe functions
 Lab – Fixing buffer overflow
 What's the problem with asctime()?
 Lab – The problem with asctime()
 Using std::string in C++

Day 2

> Buffer overflow
Some typical mistakes leading to BOF

 Unterminated strings
 readlink() and string termination

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 5

 Manipulating C-style strings in C++
 Malicious string termination
 Lab – String termination confusion
 String length calculation mistakes
 Off-by-one errors
 Case study – Off-by-one error in VxWorks TCP 'Urgent Data' parsing
 Allocating nothing

> Memory management hardening
Securing the toolchain

 Securing the toolchain in C and C++
 Compiler warnings and security
 Using FORTIFY_SOURCE
 Lab – Effects of FORTIFY
 AddressSanitizer (ASan)

 Using AddressSanitizer (ASan)
 ASan changes to the prologue
 ASan changes to memory read/write operations
 ASan changes to the epilogue
 Lab – Using AddressSanitizer

 RELRO protection against GOT hijacking
 Heap overflow protection
 Stack smashing protection

 Detecting BoF with a stack canary
 Argument cloning
 Stack smashing protection on various platforms
 SSP changes to the prologue and epilogue
 Lab – Effects of stack smashing protection
 Bypassing stack smashing protection

Runtime protections
 Runtime instrumentation
 Address Space Layout Randomization (ASLR)

 ASLR on various platforms
 Lab – Effects of ASLR
 Circumventing ASLR – NOP sleds
 Heap spraying

 Non-executable memory areas
 The NX bit

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 6

 Write XOR Execute (W^X)
 NX on various platforms
 Lab – Effects of NX
 NX circumvention – Code reuse attacks

 Return-to-libc / arc injection
 Return Oriented Programming (ROP)

 Lab – ROP demonstration
 Protection against ROP

> Common software security weaknesses
Security features

 Authentication
 Authentication basics
 Authentication weaknesses
 Case study – Missing authentication in Alaris TIVA
 User interface best practices

 Password management
 Inbound password management

 Storing account passwords
 Password in transit
 Lab – Is just hashing passwords enough?
 Dictionary attacks and brute forcing
 Salting
 Adaptive hash functions for password storage
 Password policy
 NIST authenticator requirements for memorized secrets
 Password length
 Password hardening
 Using passphrases
 Case study – The Ashley Madison data breach
 The dictionary attack
 The ultimate crack
 Exploitation and the lessons learned
 Password database migration

 Authorization
 Access control basics
 Case study – Broken authorization in Conexus protocol for Medtronic
devices

 File system access control
 Improper file system access control
 Ownership
 chroot jail

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/owasp/brute-force-when-everything-is-a-nail
https://cydrill.com/devops/nist-password-standards

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 7

 Using umask()
 Linux filesystem
 LDAP
 Case study – Insecure file permissions in McKesson Cardiology 13.x / 14.x

Day 3

> Common software security weaknesses
Security features

 Authentication
 Password management

 Outbound password management
 Hard coded passwords
 Best practices
 Lab – Hardcoded password
 Case study – Compromising Abbott FreeStyle Libre sensors via NFC
 Protecting sensitive information in memory
 Challenges in protecting memory
 Heap inspection
 Compiler optimization challenges
 Lab – Zeroization challenges
 Sensitive info in non-locked memory

> Common software security weaknesses
Input validation

 Input validation principles
 Blacklists and whitelists
 Data validation techniques
 Case study – Missing input validation in Natus Xltek NeuroWorks 8
 What to validate – the attack surface
 Where to validate – defense in depth
 How to validate – validation vs transformations
 Output sanitization
 Encoding challenges
 Validation with regex

 Injection
 Injection principles
 Injection attacks
 Code injection

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 8

 OS command injection
 Lab – Command injection
 OS command injection best practices
 Avoiding command injection with the right APIs
 Lab – Command injection best practices
 Case study – Shellshock
 Lab - Shellshock
 Case study – Command injection in GE Healthcare MobileLink
 Process control – library injection
 DLL hijacking
 Lab – DLL hijacking
 Case study – DLL injection in Vyaire Medical CareFusion Upgrade Utility

 Integer handling problems
 Representing signed numbers
 Integer visualization
 Integer promotion
 Integer overflow
 Lab – Integer overflow
 Signed / unsigned confusion
 Lab – Signed / unsigned confusion
 Integer truncation
 Lab – Integer truncation
 Case study – WannaCry
 Best practices

 Upcasting
 Precondition testing
 Postcondition testing
 Using big integer libraries
 Best practices in C
 UBSan changes to arithmetics
 Lab – Handling integer overflow on the toolchain level in C/C++
 Best practices in C++
 Lab – Integer handling best practices in C++

 Files and streams
 Path traversal
 Path traversal-related examples
 Lab – Path traversal
 Path traversal best practices
 Lab – Path canonicalization

 Format string issues
 The problem with printf()
 Lab – Exploiting format string

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 9

Day 4

> Common software security weaknesses
Time and state

 Race conditions
 Race condition in object data members

 Case study – State confusion in VxWorks IPNet stack
 File race condition

 Lab - TOCTTOU
 Insecure temporary file

 Potential race conditions in C/C++
 Race condition in signal handling
 Forking
 Bit-field access

Errors
 Error and exception handling principles
 Error handling

 Returning a misleading status code
 Error handling in C
 Error handling in C++
 Using std::optional safely
 Information exposure through error reporting

 Exception handling
 In the catch block. And now what?
 Empty catch block
 Exception handling in C++
 Lab – Exception handling mess

Code quality
 Data

 Type mismatch
 Lab – Type mismatch
 Initialization and cleanup

 Constructors and destructors
 Initialization of static objects
 Lab – Initialization cycles

 Unreleased resource
 Case study – Unreleased resource in VxWorks TCP 'Urgent Data' parsing
 Array disposal in C++
 Lab – Mixing delete and delete[]

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 10

 Control flow
 Incorrect block delimitation
 Dead code
 Leftover debug code
 Backdoors, dev functions and other undocumented functions
 Using if-then-else and switch defensively

 Signal handling
 Signal handlers
 Best practices

 Object oriented programming pitfalls
 Inheritance and object slicing
 Implementing the copy operator
 The copy operator and mutability
 Mutability

 Mutable predicate function objects
 Lab – Mutable predicate function object

 Memory and pointers
 Memory and pointer issues
 Pointer handling pitfalls
 Alignment
 Null pointers

 NULL dereference
 NULL dereference in pointer-to-member operators
 Case study – NULL dereference in VxWorks IGMP parsing

 Pointer usage in C and C++
 Use after free
 Lab – Use after free
 Lab – Runtime instrumentation
 Double free
 Memory leak
 Smart pointers and RAII
 Smart pointer challenges
 Incorrect pointer arithmetics

 File I/O
 Working with file descriptors, structures and objects
 File reading and writing
 File access functions and methods

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 11

> Using vulnerable components
Assessing the environment
Hardening
 Case study – Supply chain attack on Alaris Gateway Workstation
Vulnerability management

 Patch management
 Vulnerability management
 Vulnerability databases
 Lab – Finding vulnerabilities in third-party components
 DevOps, the build process and CI / CD
 Insecure compiler optimization

> Security testing
Security testing vs functional testing
Manual and automated methods
Security testing techniques and tools

 Code analysis
 Security aspects of code review
 Static Application Security Testing (SAST)
 Lab – Using static analysis tools

 Dynamic analysis
 Security testing at runtime
 Penetration testing
 Stress testing
 Dynamic analysis tools
 Dynamic Application Security Testing (DAST)
 Fuzzing
 Fuzzing techniques
 Fuzzing – Observing the process

> Wrap up
Secure coding principles

 Principles of robust programming by Matt Bishop
 Secure design principles of Saltzer and Schröder

And now what?
 Software security sources and further reading

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/devops/cvss-measuring-the-unmeasurable
https://cydrill.com/devops/devops-and-security-secdevops3
https://cydrill.com/devops/penetration-testing-what-it-can-and-cannot-do

Secure coding in C and C++ for medical devices https://cydrill.com/courses/

 Page 12

 C and C++ resources

https://cydrill.com/
https://cydrill.com/courses/

