

Global Training Provider for Corporate Software Security https://cydrill.com/courses/

Secure coding in C and C++

CYDCp3d | 3 days | Hands-on

Your application written in C and C++ works as intended, so you are done, right? But did you
consider feeding in incorrect values? 16Gbs of data? A null? An apostrophe? Negative
numbers, or specifically -1 or -231? Because that's what the bad guys will do – and the list is
far from complete.

Handling security needs a healthy level of paranoia, and this is what this course provides: a
strong emotional engagement by lots of hands on labs and stories from real life, all to
substantially improve code hygiene. Mistakes, consequences, and best practices are our
blood, sweat and tears.

All this is put in the context of C and C++, and extended by core programming issues,
discussing security pitfalls of these languages.

So that you are prepared for the forces of the dark side.

So that nothing unexpected happens.

Nothing.

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ https://cydrill.com/courses/

 Page 2

Audience
C/C++ developers

Preparedness
General C/C++ development

Group size
12 participants

Platforms
Linux

Windows

Labs
Hands-on

Outline
• Cyber security basics
• Buffer overflow
• Memory management hardening
• Common software security

weaknesses
• Wrap up

Objective list
• Getting familiar with essential cyber

security concepts
• Handling security challenges in your

C and C++ code
• Identify vulnerabilities and their

consequences
• Learn the security best practices in C

and C++

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ https://cydrill.com/courses/

 Page 3

Table of contents

Day 1

> Cyber security basics
What is security?
Threat and risk
Cyber security threat types
Consequences of insecure software

 Constraints and the market
 The dark side

> Buffer overflow
Assembly basics and calling conventions

 x64 assembly essentials
 Registers and addressing
 Most common instructions
 Calling conventions on x64

 Calling convention – what it is all about
 Calling conventions on x64
 The stack frame
 Stacked function calls

Memory management vulnerabilities
 Memory management and security
 Vulnerabilities in the real world
 Buffer security issues
 Buffer overflow on the stack

 Buffer overflow on the stack – stack smashing
 Exploitation – Hijacking the control flow
 Lab – Buffer overflow 101, code reuse
 Exploitation – Arbitrary code execution
 Injecting shellcode
 Lab – Code injection, exploitation with shellcode

 Buffer overflow on the heap
 Unsafe unlinking

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/cyber-security/cyber-security-from-a-galactic-viewpoint

Secure coding in C and C++ https://cydrill.com/courses/

 Page 4

 Case study – Heartbleed
 Pointer manipulation

 Modification of jump tables
 Overwriting function pointers

Best practices and some typical mistakes
 Unsafe functions
 Dealing with unsafe functions
 Lab – Fixing buffer overflow
 What's the problem with asctime()?
 Lab – The problem with asctime()
 Using std::string in C++
 Unterminated strings
 readlink() and string termination
 Manipulating C-style strings in C++
 Malicious string termination
 Lab – String termination confusion
 String length calculation mistakes
 Off-by-one errors
 Allocating nothing

Day 2

> Memory management hardening
Securing the toolchain

 Securing the toolchain in C and C++
 Compiler warnings and security
 Using FORTIFY_SOURCE
 Lab – Effects of FORTIFY
 AddressSanitizer (ASan)

 Using AddressSanitizer (ASan)
 ASan changes to the prologue
 ASan changes to memory read/write operations
 ASan changes to the epilogue
 Lab – Using AddressSanitizer

 Stack smashing protection
 Detecting BoF with a stack canary

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ https://cydrill.com/courses/

 Page 5

 Argument cloning
 Stack smashing protection on various platforms
 SSP changes to the prologue and epilogue
 Lab – Effects of stack smashing protection

 Address Space Layout Randomization (ASLR)
 ASLR on various platforms
 Lab – Effects of ASLR
 Circumventing ASLR – NOP sleds

 Non-executable memory areas
 The NX bit
 Write XOR Execute (W^X)
 NX on various platforms
 Lab – Effects of NX
 NX circumvention – Code reuse attacks

 Return-to-libc / arc injection
 Return Oriented Programming (ROP)

 Protection against ROP

> Common software security weaknesses
Security features

 Authentication
 Authentication basics
 Authentication weaknesses
 Case study – PayPal 2FA bypass

 Password management
 Inbound password management

 Storing account passwords
 Password in transit
 Lab – Is just hashing passwords enough?
 Dictionary attacks and brute forcing
 Salting
 Adaptive hash functions for password storage
 Password policy
 NIST authenticator requirements for memorized secrets
 Case study – The Ashley Madison data breach
 The dictionary attack
 The ultimate crack
 Exploitation and the lessons learned
 Password database migration

 Outbound password management
 Hard coded passwords

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/owasp/brute-force-when-everything-is-a-nail
https://cydrill.com/devops/nist-password-standards

Secure coding in C and C++ https://cydrill.com/courses/

 Page 6

 Best practices
 Lab – Hardcoded password
 Protecting sensitive information in memory
 Challenges in protecting memory
 Heap inspection
 Compiler optimization challenges
 Lab – Zeroization challenges
 Sensitive info in non-locked memory

Code quality
 Data

 Type mismatch
 Lab – Type mismatch
 Initialization and cleanup

 Constructors and destructors
 Initialization of static objects
 Lab – Initialization cycles
 Array disposal in C++
 Lab – Mixing delete and delete[]

 Memory and pointers
 Memory and pointer issues
 Pointer handling pitfalls
 Pointer usage in C and C++

 Use after free
 Lab – Use after free
 Lab – Runtime instrumentation
 Double free
 Memory leak
 Smart pointers and RAII
 Smart pointer challenges

Day 3

> Common software security weaknesses
Input validation

 Input validation principles
 Blacklists and whitelists
 Data validation techniques
 What to validate – the attack surface
 Where to validate – defense in depth
 How to validate – validation vs transformations

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ https://cydrill.com/courses/

 Page 7

 Validation with regex
 Injection

 Injection principles
 Injection attacks
 Code injection

 OS command injection
 Lab – Command injection
 OS command injection best practices
 Avoiding command injection with the right APIs
 Lab – Command injection best practices
 Case study – Shellshock
 Lab - Shellshock
 Process control – library injection
 DLL hijacking
 Lab – DLL hijacking

 Integer handling problems
 Representing signed numbers
 Integer visualization
 Integer promotion
 Integer overflow
 Lab – Integer overflow
 Signed / unsigned confusion
 Case study – The Stockholm Stock Exchange
 Lab – Signed / unsigned confusion
 Integer truncation
 Lab – Integer truncation
 Case study – WannaCry
 Best practices

 Upcasting
 Precondition testing
 Postcondition testing
 Using big integer libraries
 Best practices in C
 UBSan changes to arithmetics
 Lab – Handling integer overflow on the toolchain level in C/C++
 Best practices in C++
 Lab – Integer handling best practices in C++

 Files and streams
 Path traversal
 Path traversal-related examples
 Lab – Path traversal
 Path traversal best practices

https://cydrill.com/
https://cydrill.com/courses/

Secure coding in C and C++ https://cydrill.com/courses/

 Page 8

 Lab – Path canonicalization
 Format string issues

 The problem with printf()
 Lab – Exploiting format string

Time and state
 Race conditions

 File race condition
 Lab - TOCTTOU
 Insecure temporary file

> Wrap up
Secure coding principles

 Principles of robust programming by Matt Bishop
 Secure design principles of Saltzer and Schröder

And now what?
 Software security sources and further reading
 C and C++ resources

https://cydrill.com/
https://cydrill.com/courses/

