

Software
Engineering

BOOTCAMP OVERVIEW

Software Engineering

Table of contents

Overview 3

The proccess 4

Our 1-on-1 code review approach works 5

We layer a proven, personalised approach to our code review 6

How we get you hired 7

Career paths 8

Structure of the bootcamp 11

Breakdown of syllabus 12

Introduction to Software Engineering 15

Data Science, Algorithms and Advanced Software Engineering 18

Software Engineering

Overview

If the idea of analysing a situation and seeing how it can be improved using software excites you, then
software engineering may be the career for you. Software engineering involves more than just coding.
This discipline uses principles applicable to a breadth of large-scale software systems. Ultimately,
you’ll be able to construct software solutions to solve specific business problems.

The engineering process involves working with stakeholders to understand the requirements and
limitations of a software system. The software engineer analyses these requirements, and then
designs, implements, deploys and maintains the software system.

No prior knowledge of coding is required when taking this bootcamp, as we help you progress from
beginner to job-ready in only six months. Right from the start of the bootcamp, you’re taught
how to think like a programmer by developing systematic algorithms to solve various problems.

Going beyond software development

You’ll learn how to write code that can interact with
databases, and that uses established design patterns
and algorithms to create useful software that solves
real-world problems. Advanced-level outcomes also
include being able to test, debug, deploy and maintain
software systems, as well as guaranteeing their quality.

Throughout the bootcamp, you will be guided to
develop the skills required to think beyond mere
software development and deployment. You’ll also
learn to manage a software development project
using agile development while communicating with
technical and non-technical stakeholders. Here is
where you learn how software forms part of a system’s
architecture, and how to apply best practice principles
during the software development lifecycle.

Software Engineering

Outcomes of this bootcamp

• Design solutions to problems, and express them using pseudo-code and algorithms.

• Write useful code using Python and Java, two of the best programming languages to learn
as they’re used throughout the industry to create various web and mobile applications.

• Understand and apply computer science fundamentals, including data structures such as
lists. Other fundamentals covered include algorithms for sorting and hashing, and using Big
O Notation to analyse the performance of an algorithm.

• Use established algorithms to implement machine learning.

• Use agile development for software development projects.

• Design, plan, build, test, debug, refactor, deploy and maintain a software system.

• Use established design patterns and Git to ensure version control.

• Become job-ready in as little as 3 months.

The process

Code reviewers in partnership with HyperionDev

Bootcamp code reviewers are expertly trained to integrate code review into the lives and
bootcamp curriculum of participants. The on-demand code review method helps participants
to become fluent in the language of their choice.

Log onto your
personalised dashboard 1 Complete coding

exercises online

Your code reviewer reviews
your work within 48 hours

Perfect your coding
over 3-6 months

Earn a certificate of
completion

Begin your new career in tech

2

3 4

5 6

Software Engineering

Our 1-on-1 code review approach works

Code review enables you to learn to code the right way through mastery of deeper aspects of
software development that are a prerequisite for a career in coding. We help you master the deeper
aspects of industry-level development and set the foundation for a lucrative career in coding.

Here’s why learning through code review is smarter:

Don’t make the same mistakes as computers

Get unstuck with on-demand technical help

Be exposed to the industry standards from day one

• Automated code checking is like spell check for computer programs. You can’t write a
world-class essay with just good spelling — you need the right tone, facts, grammar,
and style. Only human-led code review can help you learn aspects of coding that are
analogous to tone and style that will make you truly fluent as a developer — automated
graders just can’t help you learn this!

• Our code reviewers will ensure you move at a steady pace by helping you debug your
programs within 48 hours. This will help you to keep moving forward so that you stay on
track.

• Developers in the real world have their work assessed by a senior developer through
the technique of code review. We’re the only bootcamp in the world that exposes our
bootcamp participants to this technique from day one so that you get an advantage in
the job market.

Software Engineering

We layer a proven, personalised
approach to our code review

Industry experts tailored to your goals

Join a community of career-changers

Free of fear of failure

• You’ll work with experienced code reviewers who will guide you through 1-on-1 calls,
career coaching, live chat, and email support.

• Learn as part of a cohort of participants all working towards ultimate career fulfilment.
Join online group tutorials, community chats and meetups, and peer coaching.

• Human-led code review builds trust with your educators and lets you progress at your
own pace. Establish a safe space to discuss any roadblocks without fear of failure.

Why choose software engineering as a
lucrative career?

Software engineering is a creative career that
allows you to work with code and people, as
well as hardware and other computer systems.
This career places you at the heart of the digital
economy, with endless scope for growth.
Software engineers hold valuable skills that
enable them to earn good salaries.

If you’re looking for a career that is both
rewarding and lucrative, software engineering
delivers on both. However, those who develop
software engineering skills can also choose to
pursue other career paths, some of which we’ll
delve into next.

Software Engineering

How we get you hired

We’re with you every step of your journey, and our support doesn’t end when you complete your
bootcamp. Our career services are developed to help you stand out from the crowd, and grab the
attention of top employers.

TECHNICAL CV AND PORTFOLIO

Receive technical assistance in getting
your CV industry-ready according to

acceptedbest-practice format.

BOOTCAMP CERTIFICATE

Know what to expect when getting
ready for that big interview with expert

interview preparation from professionals
who have been where you are.

JOIN OUR HIRING NETWORK

We work with select hiring partners and
aim to help you land your first tech job
interview after the completion of the

bootcamp.

INTERVIEW PREPARATION

Walk away with a new certificate as
evidence of your skills and expertise in

Software Engineering.

Software Engineering

A DevOps Engineer combines an understanding of both engineering and coding. They create and
implement systems software to analyse data to improve existing systems, while working with various
departments to create and develop new systems within a company. DevOps Engineers work to balance
various aspects of a project, including complex issues such as programming and network building.

Responsibilities include:

DevOps Engineer

• Implementing, maintaining, monitoring and supporting the IT infrastructure.

• Writing scripts for service quality analysis, monitoring and operation.

• Designing procedures for system troubleshooting and maintenance.

• Investigating and resolving technical issues by deploying updates/ fixes.

• Implementing automation tools and frameworks for automatic code deployment (CI/CD).

• Quality control and management of the code base.

A Back-end developer builds, updates and maintains the server-side infrastructure, or “back end,” of
a website or application. They make sure that the assets on the user-end are functional and data is
efficiently and securely stored.

Responsibilities include:

Potential career paths

Back-End Developer

• Building and maintaining web applications.

• Assessing the efficiency and speed of current applications.

• Writing high-quality code.

• Managing hosting environments.

• QA testing.

• Troubleshooting and debugging.

A Back-end Developer in the United Kingdom can earn an average salary of
£52,803 per year.

A DevOps Engineer in the United Kingdom can earn an average salary of £47,698 per year.

When you enter the world of tech - and specifically the field of software engineering - the career
options and role designations may seem intimidating at first. While the sky certainly is the limit once
you learn to code, our bootcamps get you job ready for an entry-level role at a tech business. Below are
some potential career path options you may want to consider working towards, or research further.
Responsibilities include:

Software Engineering

Junior Software Developers are entry-level software developers that assist the development team with
all aspects of software design and coding. Their primary role is to learn the codebase, attend design
meetings, write basic code, fix bugs, and assist the Development Manager in all design-related tasks.

Responsibilities include:

Software Design Engineers are tasked with identifying software problems and designing programs
to find solutions. They can either create a new product or iterations of existing software products to
improve them. They gather data about the process and incorporate existing software solutions while
determining and implementing the resultant software’s parameters and limits.
Responsibilities include:

Junior Software Engineer

Designer

• Assisting the development manager with all aspects of software design and coding.

• Attending and contributing to company development meetings.

• Learning the codebase and improving their coding skills.

• Writing and maintaining code.

• Working on minor bug fixes.

• Monitoring the technical performance of internal systems.

• Responding to requests from the development team.

• Gathering information from consumers about program functionality.

• Writing reports.

• Conducting development tests.

• Designs, codes, verifies, tests, documents, amends, and refactors complex programs/
scripts and integration software services.

• Takes responsibility for understanding client requirements, collecting data, delivering
analysis and problem resolution.

• Designs software components and modules using appropriate modelling techniques
following agreed software design standards, patterns, and methodology.

• Recommends designs which take into account target environment, performance security
requirements, and existing systems.

A Junior Software Engineer in the United Kingdom can earn an average salary of £29,540 per year.

A Software Designer in the United Kingdom can earn an average salary of £43,152 per year.

Software Engineering

As a Systems Analyst, you’ll use computers and related systems to design new IT solutions,
modify, enhance or adapt existing systems and integrate new features or improvements in
order to improve business efficiency and productivity.

Responsibilities include:

As a Software Tester, you’ll be involved in the quality assurance stage of software
development and deployment. You’ll conduct automated and manual tests to ensure the
software created by developers is fit for purpose and any bugs or issues are removed from a
product before it gets deployed to everyday users.

Responsibilities include:

Systems Analyst

Software Tester

• Liaise closely with external or internal clients.

• Analyse clients’ existing IT systems and business models.

• Map and document interfaces between legacy and new systems.

• Understand software development lifecycles.

• Translate client requirements into highly specified project briefs.

• Identify options for potential solutions and assess them for both technical and business
suitability.

• Conduct requirements analysis and prepare specific proposals for modified or
replacement systems.

• Develop solutions and related products.

• Work with software developers and project support teams.

• Identify business requirements.

• Plan projects.

• Monitor applications and software systems.

• Carry out stress testing, performance testing, functional testing and scalability
testing.

• Write and execute test scripts.

• Run manual and automated tests.

• Test in different environments including web and mobile.

• Write bug reports.

• Assess code.

A System Analyst in the United Kingdom can earn an average salary of £37,326 per year.

A Software Tester in the United Kingdom can earn an average salary of £30,735 per year.

Software Engineering

Structure of the bootcamp
This bootcamp helps you progress from learning the basics of programming and acts as path
to a rewarding career in software engineering. Proceed from novice to job-ready, and land the
successful role you deserve.

Bootcamp prep (Before you start)

Introduction to Programming (Beginner level)

Introduction to Software Engineering (Intermediate level)

Advanced Software Engineering (Advanced level)

Career Readiness and Employability (Post Bootcamp completion)

• Learn about the software development sector and how we support you in achieving your
development goals. Start programming with Python to attain a clearer idea of whether a
career in the software development industry is really for you.

• Get to grips with the fundamentals of programming and the Python programming language.
You also learn the basic concepts and master fundamental skills needed to code in Python.

• Understand how industry professionals develop software by exploring the best
practices they use. You’re also challenged to work on your programming skills,
enabling you to deliver the most effective solutions for clients.

• Take on the more advanced software engineering concepts and explore aspects such as
deployment and maintenance best practice, quality assurance, Big O Notation, machine
learning, and algorithms.

• Once you have completed your bootcamp, we provide career support and guidance,
including interview preparation and CV review, to equip you with technical skills and
professional career development tools to succeed in your job search.

• We introduce the participants who have completed the bootcamp to the industry
through various networking events, career expos and job opportunities with our
hiring partners. Most of our participants get hired within six months of completing the
bootcamp with our support and mentorship.

Software Engineering

Introduction to programming

Tasks: 30 Capstone projects: 4

Breakdown of syllabus

The bootcamp is structured to allow you to start coding as soon as possible.
Tasks are designed to:

Remember, you’re never alone. You can contact one of our expert code reviewers for 1:1 support whenever you need help
with a task. The code you submit for each task is reviewed by a code reviewer who is an industry expert, to help improve
efficiency and quality of code.

• Teach you the theory needed to develop your skills.

• Give you the platform to practise implementing your new knowledge by completing
one or more practical activities.

Tasks no. Task name Description

1 Thinking Like a Programmer -
Pseudo Code I

Learn how pseudo code can help you
clarify your thoughts and properly plan
your programs before writing any code.

2 Thinking Like a Programmer -
Pseudo Code II

Delve further into algorithm design and
representation.

3 Your First Computer Program Get acquainted with Python, the powerful,
easy to learn and extremely popular, high-
level programming language.

4 Variables -
Storing Data In Programs

Learn how to store and interact with the
data in our programs using variables.

5 The String Data Type Learn how to store and manipulate text
using the string data type.

Software Engineering

Tasks no. Task name Description

6 Numerical Data Types Explore the different types of numbers
used in the Python programming
language.

7 If Statements and the
Boolean Data Type

Learn how to use the if statement to make
decisions in your program.

8 Beginner control structure -
Else statements.

Learn how to control the order in which
statements are executed using the else
statement.

9 Beginner Control Structures -
Elif statements.

Learn how to check for multiple conditions
using elif statements.

10 Logical programming -
Operators.

Learn how to tell the compiler how to
perform specific mathematical, relational
or logical operations using operators.

11 Capstone Project I -
Variables and Control
Structures.

Put your knowledge of variables and
control structures to the test by creating
an investment calculator.

12 Beginner Control Structures:
While loop

Learn how to execute a block of code
repeatedly until a given condition returns
false using while loops.

13 Beginner Control
Structures - For Loop

Learn how to use the for loop to repeat
a section of code a specified number of
times.

14 Towards Defensive
Programming - Error
Handling

Discover the different types of errors that
might occur in your programs and how to
handle them.

15 String Handling Learn how to manipulate text using
Python’s built-in functions.

16 Beginner Data Structures -
The List

Discover the most frequently used and
versatile collection data type used in
Python - the list.

Software Engineering

Tasks no. Task name Description

17 Working With External Data
Sources - Input

Create smarter programs by learning how
to read data from text files.

18 Working with External Data
Sources - Output

Learn how to write data to text files.

19 Capstone Project II - Files Put everything you’ve learnt about files to
the test in this comprehensive task.

20 Beginner Data Structures -
Lists and Dictionaries

Learn how to manipulate lists and become
acquainted with dictionaries.

21 Beginner Programming With
Functions - Using Built-In
Functions

Learn how to use Python’s built-in
functions to provide better modularity for
your programs and encourage code reuse.

22 Beginner Programming with
Functions - Defining Your
Own Functions

Create your own Python functions to carry
out specific tasks.

23 Hypothesis-Driven
Debugging With the Stack
Trace

Learn to debug methodically and move
away from trying to resolve errors
randomly.

24 Capstone Project III - Lists,
Functions and String
Handling

Use all the knowledge you have gained so
far throughout this bootcamp to create a
useful program.

25 Introduction to Python - Data
Structures - 2D Lists

Discover the most frequently used and
versatile collection data type used in
Python - the list.

26 Applied Recursion Explore the concepts of recursive
programming and how to “think
recursively”.

27 Towards Defensive
Programming II

Learn how to guard against errors you
don’t expect.

Software Engineering

Introduction to Software Engineering

Tasks: 23 Capstone projects: 2

Tasks no. Task name Description

28 Introduction to
OOP I - Classes

Introduction to the principles of Object
Oriented Programming (OOP).

29 Introduction to
OOP II - Inheritance

Learn how you can improve the
modularity and reuse of code using
inheritance, and the critical role it plays
in Python’s object system.

30 Capstone Project IV -
OOP

Apply the fundamentals of object-
orientation to solve a simple problem.

Tasks no. Task name Description

1 The Software Process Delve into the concepts of the software
development process and the software
process models.

2 Agile Development Learn about agile development and one
of the most popular agile methodologies -
Extreme Programming.

3 System Requirements and
Design

Explore best practice guidelines for
defining your product and UX/UI design

Software Engineering

Tasks no. Task name Description

4 System Architecture Discover the various components that
make up and interact with a software
system.

5 Quality Management Discover how to ensure that your
developed software is both dependable
and secure.

6 Deployment and
Maintenance Best Practice

Discover the best practice guidelines
for ensuring effective deployment and
maintenance of software systems.

7 Introduction to Network
Protocols and System
Architecture: HTTP and
Client-Server

Learn how computers communicate with
each other over the internet using the
HTTP protocol, and learn the commonly
used client-server architecture for
transferring information using HTTP.

8 Working From The
Command Line

Learn to use the command line for web
development, including basic commands
and functionality used with the command
line.

9 Introduction to Databases Compare relational, graph, and NoSQL
databases.

10 Design and Build Relational
Database

Design a database by applying
normalisation principles. Create relational
databases.

11 Working With SQL Learn about agile development and one
of the most popular agile methodologies -
Extreme Programming.

12 SQLite Get comfortable with SQLite, a self-
contained, public domain SQL database
engine.

Software Engineering

Tasks no. Task name Description

13 Capstone Project I:
Databases

Learn how to communicate with your
database using SQL and MySQL.

14 Introduction to Web
Development

Learn what the web is. To write programs
that run on the web, we first need to
grasp what it is, and how people interact
with it.

15 HTML Overview Learn to use HTML to add content to a
webpage.

16 CSS Overview Use CSS to improve the appearance of
your webpage.

17 Bootstrap: Build Attractive
Pages Faster Using
Bootstrap

Learn how to style like Twitter does.

18 Django I Introduction to Django.

19 Django II Build a blogging application.

20 Django III Build a poll application.

21 Django IV Extend the poll application.

22 Django V Authentication and Authorisation.

23 Capstone Project II: Django Build a Django web application.

Software Engineering

Data Science, Algorithms and Advanced
Software Engineering

Tasks: 13 Capstone

Tasks no. Task name Description

1 Sources of Data Learn how to extract and import data
from different sources (JSON, XML, CSV).

2 Sorting and Searching Learn about data sources and types,
data structures, and how to use these,
including ordering and finding data in
different types of data structures.

3 Version Control I:
Introduction to Version
Control and Git

Explore the Git version control system
and the GitHub collaboration platform.

4 Version Control II: Git Basics Dive into using Git and discover how
to set up a repository, use common Git
commands, commit a modified file, view
your project’s history, and branch.

5 Version Control III:
Deployment of Static
Websites

Learn how to deploy your websites using
GitHub Pages.

6 Build Your Brand I Use GitHub to start building a portfolio
of work that you can share with others to
showcase your skills.

7 Version Control IV: Pipelines Learn about how Git is used in real-world
collaborative project.

Software Engineering

Tasks no. Task name Description

8 Containers: Docker Learn Docker, a service that is used to
build and share applications regardless of
the platform it is run on.

9 Software Documentation Learn how to store and interact with the
data in our programs using variables.

10 Capstone I Add version control to your Django
project, document the project, and
containerise it.

11 Introduction to NLP Get acquainted with Natural Language
Processing by learning about parts of
speech, parsing, and how to install and start
using spaCy.

12 Semantic Similarity (NLP) Learn about semantic Similarity, a popular
application of NLP widely used for social
media analysis.

13 Capstone Project II: NLP Utilise your newly acquired knowledge of
semantic similarity and natural language
processing in this final capstone project.

The University of Manchester is partnering with online education provider HyperionDev to offer a portfolio of high-impact
outcomes-oriented online learning programmes please note that course contents shown here are subject to change without prior
notice. These programmes are provided by HyperionDev and quality assured by The University of Manchester to leverage their
thought leadership in technical practice developed over decades of expertise.

	Overview
	The proccess
	Our 1-on-1 code review approach works
	We layer a proven, personalised approach to our code review
	Career paths
	Structure of the bootcamp

	Breakdown of syllabus
	Web development with react and express (intermediate)
	Full stack web developer (advanced)

